Glycolytic inhibition by 2-deoxyglucose reduces hyperglycemia-associated mortality and morbidity in the ischemic rat.
نویسندگان
چکیده
Numerous laboratories have shown that hyperglycemia increases cerebral ischemic damage. This presumably results from increased lactate production and accumulation during ischemia. Although increased tissue lactic acidosis is associated with increased ischemic brain damage, this damage has not been directly linked to glycolytic flux. Because 2-deoxyglucose (2-DG) is a competitive inhibitor of glycolysis we tested its ability to reduce hyperglycemia-exacerbated ischemic brain damage. Severe forebrain ischemia was produced by the four-vessel occlusion model in rats. Four rats received 3 g/kg glucose and saline while a second group (n = 5) was injected with 3 g/kg glucose plus 1.6 g/kg 2-DG. A third group (n = 5) was treated with 1 g/kg glucose plus saline and a fourth group (n = 5) received 1 g/kg glucose and 1.6 g/kg 2-DG. All rats were injected i.p. 10 minutes prior to the ischemic insult with the same volume/kg body weight. All rats receiving the high dose of glucose alone (3 g/kg) were dead within 24 hours postischemia. Rats who received 2-DG in addition to 3 g/kg glucose showed only 40% mortality (p = 0.119 Fisher's Exact). 2-DG completely eliminated convulsions during the initial two hours of recovery which was significant (p = 0.008), however, all rats in both groups showed some convulsions by 24 hours postischemia. Among rats receiving the low glucose dose (1 g/kg), none of the rats receiving 2-DG died or convulsed by 24 hours postischemia.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
محلول "گلوکز- انسولینـ پتاسیم" در سکته مغزی ایسکمیک: کارآزمایی بالینی
Background: Hyperglycemia after acute stroke is a common finding that has been associated with an increased risk of death. For the last several years, it was believed that post-stroke hyperglycemia may worsen brain infarction in animal models. According to previous studies, the anti-inflammatory effect of insulin has a protective role on ischemic tissues. Glucose-insulin-potassium (GIK) infusio...
متن کاملInhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملGlucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts.
This study analyzes the importance of the source and rate of ATP production (glucose flux, glycogenolysis, and oxidative phosphorylation) in the prevention of ischemic contracture in isolated rat hearts. Ischemic contracture was initiated at about 10 minutes by buffer perfusion with nonglycolytic substrates whereas the addition of 11 mM glucose prevented contracture for 2 hours. Tissue values o...
متن کاملExtracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملGlycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.
We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 17 5 شماره
صفحات -
تاریخ انتشار 1986